Week‐ahead daily peak load forecasting using genetic algorithm‐based hybrid convolutional neural network
Author:
Affiliation:
1. Department of Electrical Engineering Chung Yuan Christian University Taoyuan Taiwan
2. Instrument Division of Nuclear Energy Institute of Nuclear Energy Research Taoyuan Taiwan
Funder
Institute of Nuclear Energy Research
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/gtd2.12460
Reference27 articles.
1. ARC algorithm: A novel approach to forecast and manage daily electrical maximum demand
2. Daily Peak Load Forecasting by Taguchi's T Method
3. Distribution feeder‐level day‐ahead peak load forecasting methods and comparative study
4. Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm
5. Daily peak electricity demand forecasting based on an adaptive hybrid two-stage methodology
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. PV ENERGY FORECASTING USING DEEP LEARNING ALGORITHM;Suranaree Journal of Science and Technology;2024-06-06
2. Construction of Measurement Model for Ultimate Carrying Capacity of Medium Voltage Distribution Network Based on Genetic Neural Network;Journal of Electrical Engineering & Technology;2024-03-15
3. Real-Time Management of Coal Mine Underground Shield Machine Digging Speed Based on Improved Residual Neural Networks;IEEE Access;2024
4. Genetic Algorithm-Based Neural Network for Vegetable Price Forecasting on E-Commerce Platform: A Case Study in Malaysia;Algorithms for Intelligent Systems;2024
5. Highway Self-Attention Dilated Casual Convolutional Neural Network Based Short Term Load Forecasting in Micro Grid;Journal of Machine and Computing;2023-10-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3