PV ENERGY FORECASTING USING DEEP LEARNING ALGORITHM

Author:

Rajnish ,Saroha Sumit,Saini Manish

Abstract

Solar energy has vast potential in India which is a rapidly growing economy with diverse geographical features. Solar energy has intermittent behaviour and depends on geographical and weather conditions. Therefore, the reliability of the solar depends on the seamless operation of solar plants with the latest technologies. The main objective of  power operator is to facilitate the renewable power sources intergeration for maintaining an uninterrupted power supply. To achieve this objective, researchers have employed various Deep Learning methods of machine learning, such as RNN, LSTM, CNN and SVM for accurate solar power forecasting with higher relibaility. In this paper, a GA-CNN  deep learning algorithm is employed with an optimized hyperparameters technique for PV energy forecasting. This technique outperforms when compared with the other methods such as LSTM, KNN-SVM, and CNN-RNN techniques in terms of RMSE, MAE, MSE and R-Square performance indices. This method provides a better and more robust method of deep learning for solar PV energy forecasting.

Publisher

Suranaree University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3