Traffic sign recognition using weighted multi‐convolutional neural network

Author:

Natarajan Sudha1,Annamraju Abhishek Kumar2,Baradkar Chaitree Sham2

Affiliation:

1. School of ComputingSASTRA UniversityThanjavurIndia

2. Autonomous Vehicle Program – R&D, Tata Elxsi LtdBangaloreIndia

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Reference41 articles.

1. ViolaP.JonesM.: ‘Rapid object detection using a boosted cascade of simple features’.Proc. Intl. Conf. on Computer Vision and Pattern Recognition 2001

2. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition

3. StallkampJ.SchlipsingM.SalmenJ.et al.: ‘The German traffic sign recognition benchmark: a multi‐class classification competition’.Proc. IEEE Intl. Joint Conf. on Neural Networks 2011 pp.1453–1460

4. SermanetP.LeCunY.: ‘Traffic sign recognition with multi‐scale convolutional networks’.Proc. Intl. Joint Conf. on Neural Networks 2011 pp.2809–2813

5. ZengY.XuX.FangY.et al.: ‘Traffic sign recognition using extreme learning classifier with deep convolutional features’.Proc. Intl. Conf. on Intelligence Science and Big Data Engineering 2015

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Centered Scheme to Enhance Robustness of Deep Learning Model for Traffic Sign Recognition under Adverse Weather;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Traffic Sign Recognition Algorithm Based on Sparse Coding End-to-End Training;2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA);2024-01-26

3. TSDet: A new method for traffic sign detection based on YOLOv5‐SwinT;IET Image Processing;2023-11-16

4. Research on Classification of Traffic Signs Based on Convolutional Neural Network;2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC);2023-09-15

5. A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems;Engineering Science and Technology, an International Journal;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3