MDU‐sampling: Multi‐domain uniform sampling method for large‐scale outdoor LiDAR point cloud registration

Author:

Ou Wengjun1ORCID,Zheng Mingkui1,Zheng Haifeng1

Affiliation:

1. College of Physics and Information Engineering Fuzhou University Fuzhou China

Abstract

AbstractSampling is a crucial concern for outdoor light detection and ranging (LiDAR) point cloud registration due to the large amounts of point cloud. Numerous algorithms have been devised to tackle this issue by selecting key points. However, these approaches often necessitate extensive computations, giving rise to challenges related to computational time and complexity. This letter proposes a multi‐domain uniform sampling method (MDU‐sampling) for large‐scale outdoor LiDAR point cloud registration. The feature extraction based on deep learning aggregates information from the neighbourhood, so there is redundancy between adjacent features. The sampling method in this paper is carried out in the spatial and feature domains. First, uniform sampling is executed in the spatial domain, maintaining local point cloud uniformity. This is believed to preserve more potential point correspondences and is beneficial for subsequent neighbourhood information aggregation and feature sampling. Subsequently, a secondary sampling in the feature domain is performed to reduce redundancy among the features of neighbouring points. Notably, only points on the same ring in LiDAR data are considered as neighbouring points, eliminating the need for additional neighbouring point search and thereby speeding up processing rates. Experimental results demonstrate that the approach enhances accuracy and robustness compared with benchmarks.

Funder

Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China

Natural Science Foundation of Fujian Province

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3