Unmanned ground vehicle‐unmanned aerial vehicle relative navigation robust adaptive localization algorithm

Author:

Dai Jun12,Liu Songlin1,Xiangyang Hao1,Ren Zongbin1,Yang Xiao3,Lv Yunzhu1

Affiliation:

1. Institute of Geospatial Information Information Engineering University Zhengzhou China

2. School of Aerospace Engineering Zhengzhou University of Aeronautics Zhengzhou China

3. Dengzhou Water Conservancy Bureau Dengzhou China

Abstract

AbstractThe unmanned aerial vehicle (UAV) and the unmanned ground vehicle (UGV) can complete complex tasks through information sharing and ensure the mission execution capability of multiple unmanned carrier platforms. At the same time, cooperative navigation can use the information interaction between multi‐platform sensors to improve the relative navigation and positioning accuracy of the entire system. Aiming at the problem of deviation of the system model due to gross errors in sensor measurement data or strong manoeuvrability in complex environments, a robust and adaptive UGV‐UAV relative navigation and positioning algorithm is proposed. In this paper, the relative navigation and positioning of UGV‐UAV is studied based on inertial measurement unit (IMU)/Vision. Based on analyzing the relative kinematics model and sensor measurement model, a leader (UGV)‐follow (UAV) relative navigation model is established. In the implementation of the relative navigation and positioning algorithm, the robust adaptive algorithm and the non‐linear Kalman filter (extended Kalman filter [EKF]) algorithm are combined to dynamically adjust the system state parameters. Finally, a mathematical simulation of the accompanying and landing process in the UGV‐UAV cooperative scene is carried out. The relative position, velocity and attitude errors calculated by EKF, Robust‐EKF and Robust‐Adaptive‐EKF algorithms are compared and analyzed by simulating two cases where the noise obeys the Gaussian distribution and the non‐Gaussian distribution. The results show that under the non‐Gaussian distribution conditions, the accuracy of the Robust‐Adaptive‐EKF algorithm is improved by about two to three times compared with the EKF and Robust‐EKF and can almost reach the relative navigation accuracy under the Gaussian distribution conditions. The robust self‐adaptive relative navigation and positioning algorithm proposed in this paper has strong adaptability to the uncertainty and deviation of system modelling in complex environments, with higher accuracy and stronger robustness.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference32 articles.

1. Zhang X.:Research on collaborative planning method of UAV/UGV multi‐point dynamic assembly of messenger mechanism. Beijing Institute of Technology(2015)

2. The research status and progress of cooperative navigation for multiple AUVs;Xu B.;Acta Autom. Sin.,2015

3. Summary of Key technologies for heterogeneous unmanned system cooperative operations;Guo J.F.;J. Astronaut,2020

4. A Literature Review on the Research Status and Progress of Cooperative Navigation Technology for Multiple UAVs;Xu X.W.;Navigation Positioning and Timing,2017

5. Relative navigation for autonomous aerial refueling rendezvous phase

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3