HQ‐I2IT: Redesign the optimization scheme to improve image quality in CycleGAN‐based image translation systems

Author:

Zhang Yipeng123ORCID,Hu Bingliang12,Huang Yingying123,Gao Chi123,Yin Jianfu123,Wang Quang12

Affiliation:

1. Key Laboratory of Spectral Imaging Technology Xi'an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences Xi'an Shaanxi China

2. The Key Laboratory of Biomedical Spectroscopy of Xi'an Xi'an Shaanxi China

3. School of Optoelectronics University of Chinese Academy of Sciences Beijing China

Abstract

AbstractThe image‐to‐image translation (I2IT) task aims to transform images from the source domain into the specified target domain. State‐of‐the‐art CycleGAN‐based translation algorithms typically use cycle consistency loss and latent regression loss to constrain translation. In this work, it is demonstrated that the model parameters constrained by the cycle consistency loss and the latent regression loss are equivalent to optimizing the medians of the data distribution and the generative distribution. In addition, there is a style bias in the translation. This bias interacts between the generator and the style encoder and visually exhibits translation errors, e.g. the style of the generated image is not equal to the style of the reference image. To address these issues, a new I2IT model termed high‐quality‐I2IT (HQ‐I2IT) is proposed. The optimization scheme is redesigned to prevent the model from optimizing the median of the data distribution. In addition, by separating the optimization of the generator and the latent code estimator, the redesigned model avoids error interactions and gradually corrects errors during training, thereby avoiding learning the median of the generated distribution. The experimental results demonstrate that the visual quality of the images produced by HQ‐I2IT is significantly improved without changing the generator structure, especially when guided by the reference images. Specifically, the Fréchet inception distance on the AFHQ and CelebA‐HQ datasets are reduced from 19.8 to 10.2 and from 23.8 to 17.0, respectively.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

Reference39 articles.

1. Generative adversarial networks

2. Kingma D.P. Welling M.:Auto‐encoding variational Bayes. arXiv:13126114 (2013)

3. Denoising diffusion probabilistic models;Ho J.;Adv. Neural Inf. Process. Syst.,2020

4. Ramesh A. Pavlov M. Goh G. Gray S. Voss C. Radford A. et al.:Zero‐shot text‐to‐image generation. In:International Conference on Machine Learning pp. 8821–8831.Microtome Publishing Brookline MA(2021)

5. Radford A. Kim J.W. Hallacy C. Ramesh A. Goh G. Agarwal S. et al.:Learning transferable visual models from natural language supervision. In:International Conference on Machine Learning pp. 8748–8763.Microtome Publishing Brookline MA(2021)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3