A dynamic data prepossessing method for parameter identification in power distribution network

Author:

Wang Chuanjun1,Xiang Wei1,Hu Ke2ORCID,Li Bin1

Affiliation:

1. Nanjing Institute of Technology Nanjing Jiangsu China

2. Key Laboratory of Data Engineering and Visual Computing Chongqing University of Posts and Telecommunications Chongqing China

Abstract

AbstractThe methods of building a model like Markov chain Monte‐Carlo (MCMC) and sequential model‐based global optimization (SMBO) in power distribution network (PDN) have achieved parameter identification successfully without extra measurement devices. However, the data processing focused on the feeder data is not concerned yet. In this study, the authors present a dynamic data prepossessing method for parameter identification in PDN to successfully obtain a more accurate result. This method considers the similarities of feeder data in both spatial relationship and statistical theory, and then realizes a dynamic aggregation process for new coming data and obtains a set of data with tighter higher dimensional relationship for following identification task. In experiments, the authors applied this data processing method to the actual feeder data with no adjustment of the other condition; identification results with the authors’ processing achieve a 5.3% improvement in accuracy at most.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Science Applications

Reference18 articles.

1. Present development condition and trends of energy storage technology in the integration of distributed renewable energy;Li J.;Trans. China Electrotech. Soc,2016

2. Distribution System Parameter and Topology Estimation Applied to Resolve Low-Voltage Circuits on Three Real Distribution Feeders

3. Strategic Use of Synchronized Phasor Measurements to Improve Network Parameter Error Detection

4. A direct method for distribution system load flow solutions;Venkata Krishna B.;Int. J. Eng. Adv. Technol. (IJEAT),2019

5. Small signal equivalent model of synchronous generator-based grid-connected microgrid using improved Heffron-Phillips model

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3