An Extensible Gradient-Based Optimization Method for Parameter Identification in Power Distribution Network

Author:

Wang Chuanjun1ORCID,Fei Kehao1ORCID,Xu Xinle2ORCID,Chen Haoran3,Hu Ke4ORCID,Xu Shihe5ORCID,Ma Jiayang1ORCID

Affiliation:

1. Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China

2. University of California, Davis 1 Shields Ave, Davis, CA 95616, USA

3. School of Information and Communication, National University of Defense Technology, Wuhan 430019, Hubei, China

4. Chongqing University of Posts and Telecommunications, Chongqing 400065, China

5. University of Science and Technology of China, Hefei 230027, Anhui, China

Abstract

Accurate parameter identification of power distribution network (PDN) has attracted remarkable attention recently. However, power device parameters usually show an instability attributed to both the operating status and manual entry. Therefore, it is urgent to develop reliable algorithms for identifying PDN parameters with both high accuracy and high efficiency. Most of the existing algorithms are gradient-free and based on the heuristic schemes, resulting in an unstable numerical calculation. Herein, based on our previous work about the adaptive gradient-based optimization (AGBO) method, we propose an extensive version, namely, AGBO-Pro model. In this method, both the numerical and categorical features of experimental observations are utilized and incorporated with each via a weighted average. By comparing the proposed method with several heuristic algorithms, it is found that the errors in RMSE, MAE, and MAPE criteria via AGBO-Pro are all about 2 times lower with a much faster and more stable convergence of the loss function. By further taking a linear transformation of the loss function, the AGBO-Pro model achieves a more robust performance with a much lower variance in repeat numerical calculations. This work shows great potential in possible extension of gradient-based optimization methods for parameter identification in PDN.

Funder

Nanjing Institute of Technology Scientific Research Start-Up Fund for High-Level Introduced Talents

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3