Method of inter‐turn fault detection for next‐generation smart transformers based on deep learning algorithm
Author:
Affiliation:
1. Department of Electrical EngineeringTsinghua UniversityBeijingPeople's Republic of China
2. Center for Magnetic Nanotechnology, Stanford University450 Serra Mall, StanfordCA94305USA
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/hve.2019.0067
Reference26 articles.
1. Review of accumulative failure of winding insulation subjected to repetitive impulse voltages
2. Resistance characteristics and electrification characteristics of GIS epoxy insulators under DC voltage
3. DC resistance measurement for low voltage side winding of large‐scale transformer;Zhirui L.;Elect. Power Autom. Equip.,2007
4. Towards automated statistical partial discharge source classification using pattern recognition techniques
5. Analysis of the key problem about insulation condition assessment of oil‐paper in power transformers based on partial discharge;Qingquan L.I.;High Volt. Eng.,2017
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Fault Diagnosis Approach Utilizing Artificial Intelligence for Maritime Power Systems within an Integrated Digital Twin Framework;Applied Sciences;2024-09-10
2. Advancement in transformer fault diagnosis technology;Frontiers in Energy Research;2024-07-22
3. An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles;World Electric Vehicle Journal;2024-04-15
4. Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement;IET Energy Systems Integration;2024-04-14
5. A review of machine learning applications in power system protection and emergency control: opportunities, challenges, and future directions;Frontiers in Smart Grids;2024-04-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3