Affiliation:
1. School of Electrical Engineering and Automation Hefei University of Technology Hefei China
2. Electric Power Research Institute of State Grid Anhui Electric Power Co., Ltd. Hefei China
Abstract
AbstractSurface charge accumulation is the potential criminal for surface insulation failure on spacers under direct current (DC) voltages. The existence of thermal gradient posing the difficulty of surface charge regulation. This study proposes a temperature‐dependent adaptive conductivity coating technique for surppressing surface charge accumulation under electro‐thermal coupling field. A two‐dimensional axis‐symmetrical simulation model regrading surface charge computation is established. The effects of thermal gradients and coating conductivity on surface charge and electric field distribution are investigated. The results show that the thermal gradient increases the bulk conductive current, therefore aggravating surface charge accumulation. The effects of the coating condcutivity on surface charge and electric field contains three stages. The lower coating conductivity leads to aggravated homo‐polarity charge accumulation. By increasing the coating conductivity, the surface charge and electric field are significantly suppressed at the obtained optimal conductivity, where the bulk and surface conductive current reach a balance stage. Continuously increasing the coating conductivity results in aggravated hetero‐polarity charges. Besides, the increase of thermal gradient to an appropriate extent contributes to the further suppression of surface charge on coated spacers. It is hoped that this study could provide some references for designing highly reliable DC GIL under electro‐thermal coupling field.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献