Affiliation:
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing China
2. College of Electrical Engineering and Control Science Nanjing Tech University Nanjing China
3. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China
4. School of Engineering RMIT University Melbourne Victoria Australia
Abstract
AbstractThe flashover strength of epoxy (EP) insulations in the High voltage direct current applications of future energy grids can be improved by tailoring their surface condition. This work aims to improve the DC surface flashover characteristics of EP after being treated with sandpaper of different gradings. Samples with virgin EP and homogenously modified EP considering varying surface roughness (Ra = 0.54, 3.16, 5.24, and 8.35 μm) are prepared. Different experimental characterisations, such as water contact angle, surface intrinsic conductivity, surface voltages, flashover strength, and trap distributions are conducted and evaluated to analyse the difference between virgin and treated EP. Moreover, based on the obtained experimental results of homogenously treated EP and theoretical analysis, the concept of surface functionally graded materials (SFGMs) is put forward. The flashover voltages of homogenously treated EP are augmented significantly compared to virgin EP regardless of the voltage polarity and enhanced by enhancing the surface roughness. The sample TModel‐C with SFGM design shows a 45.02% and 43.75% improvement in the negative and positive flashover voltages than that of the virgin EP. In the end, COMSOL simulations are conducted to justify the experimental findings and to analyse the difference between virgin and modified samples in terms of electric field distribution.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献