Tiny machine learning on the edge: A framework for transfer learning empowered unmanned aerial vehicle assisted smart farming

Author:

Hayajneh Ali M.1ORCID,Aldalahmeh Sami A.2,Alasali Feras1ORCID,Al‐Obiedollah Haitham1,Zaidi Sayed Ali3,McLernon Des3

Affiliation:

1. Department of Electrical Engineering Faculty of Engineering The Hashemite University Zarqa Jordan

2. Electrical Engineering Department Faculty of Engineering and Technology Al‐Zaytoonah University of Jordan Amman Jordan

3. School of Electronic and Electrical Engineering University of Leeds Leeds UK

Abstract

AbstractEmerging technologies are continually redefining the paradigms of smart farming and opening up avenues for more precise and informed farming practices. A tiny machine learning (TinyML)‐based framework is proposed for unmanned aerial vehicle (UAV)‐assisted smart farming applications. The practical deployment of such a framework on the UAV and bespoke internet of things (IoT) sensors which measure soil moisture and ambient environmental conditions is demonstrated. The key objective of this framework is to harness TinyML for implementing transfer learning (TL) using deep neural networks (DNNs) and long short‐term memory (LSTM) ML models. As a case study, this framework is employed to predict soil moisture content for smart agriculture applications, guiding optimal water utilisation for crops through time‐series forecasting models. To the best of authors’ knowledge, a framework which leverages UAV‐assisted TL for the edge internet of things using TinyML has not been investigated previously. The TL‐based framework employs a pre‐trained data model on different but similar applications and data domains. Not only do the authors demonstrate the practical deployment of the proposed framework but they also quantify its performance through real‐world deployment. This is accomplished by designing a custom sensor board for soil and environmental sensing which uses an ESP32 microcontroller unit. The inference metrics (i.e. inference time and accuracy) are measured for different ML model architectures on edge devices as well as other performance metrics (i.e. mean square error and coefficient of determination [R2]), while emphasising the need for balancing accuracy and processing complexity. In summary, the results show the practical feasibility of using drones to deliver TL for DNN and LSTM models to ultra‐low performance edge IoT devices for soil humidity prediction. But in general, this work also lays the foundation for further research into other applications of TinyML usage in many different aspects of smart farming.

Funder

Royal Academy of Engineering

HORIZON EUROPE Marie Sklodowska-Curie Actions

Engineering and Physical Sciences Research Council

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Urban Studies,Software,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3