Affiliation:
1. Electrical Engineering and Computer Science College University of Tennessee Knoxville Tennessee USA
2. Department of Electrical, Electronic and Communication Engineering (EECE) Military Institute of Science and Technology (MIST) Dhaka Bangladesh
Abstract
AbstractMachine vision in low‐light conditions is a critical requirement for object detection in road transportation, particularly for assisted and autonomous driving scenarios. Existing vision‐based techniques are limited to daylight traffic scenarios due to their reliance on adequate lighting and high frame rates. This paper presents a novel approach to tackle this problem by investigating Vehicle Detection and Localisation (VDL) in extremely low‐light conditions by using a new machine learning model. Specifically, the proposed model employs two customised generative adversarial networks, based on Pix2PixGAN and CycleGAN, to enhance dark images for input into a YOLOv4‐based VDL algorithm. The model's performance is thoroughly analysed and compared against the prominent models. Our findings validate that the proposed model detects and localises vehicles accurately in extremely dark images, with an additional run‐time of approximately 11 ms and an accuracy improvement of 10%–50% compared to the other models. Moreover, our model demonstrates a 4%–8% increase in Intersection over Union (IoU) at a mean frame rate of 9 fps, which underscores its potential for broader applications in ubiquitous road‐object detection. The results demonstrate the significance of the proposed model as an early step to overcoming the challenges of low‐light vision in road‐object detection and autonomous driving, paving the way for safer and more efficient transportation systems.
Publisher
Institution of Engineering and Technology (IET)
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition,Experimental and Cognitive Psychology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献