Unleashing the power of generative adversarial networks: A novel machine learning approach for vehicle detection and localisation in the dark

Author:

Hassan Onim Md Saif1,Nyeem Hussain2ORCID,Khan Arnob Md. Wahiduzzaman2,Pooja Arunima Dey2

Affiliation:

1. Electrical Engineering and Computer Science College University of Tennessee Knoxville Tennessee USA

2. Department of Electrical, Electronic and Communication Engineering (EECE) Military Institute of Science and Technology (MIST) Dhaka Bangladesh

Abstract

AbstractMachine vision in low‐light conditions is a critical requirement for object detection in road transportation, particularly for assisted and autonomous driving scenarios. Existing vision‐based techniques are limited to daylight traffic scenarios due to their reliance on adequate lighting and high frame rates. This paper presents a novel approach to tackle this problem by investigating Vehicle Detection and Localisation (VDL) in extremely low‐light conditions by using a new machine learning model. Specifically, the proposed model employs two customised generative adversarial networks, based on Pix2PixGAN and CycleGAN, to enhance dark images for input into a YOLOv4‐based VDL algorithm. The model's performance is thoroughly analysed and compared against the prominent models. Our findings validate that the proposed model detects and localises vehicles accurately in extremely dark images, with an additional run‐time of approximately 11 ms and an accuracy improvement of 10%–50% compared to the other models. Moreover, our model demonstrates a 4%–8% increase in Intersection over Union (IoU) at a mean frame rate of 9 fps, which underscores its potential for broader applications in ubiquitous road‐object detection. The results demonstrate the significance of the proposed model as an early step to overcoming the challenges of low‐light vision in road‐object detection and autonomous driving, paving the way for safer and more efficient transportation systems.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications,Computer Vision and Pattern Recognition,Experimental and Cognitive Psychology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3