Traffic Congestion Detection from Camera Images using Deep Convolution Neural Networks

Author:

Chakraborty Pranamesh1,Adu-Gyamfi Yaw Okyere2,Poddar Subhadipto1,Ahsani Vesal1,Sharma Anuj1,Sarkar Soumik3

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA

2. Department of Civil and Environmental Engineering, Columbia, MO

3. Department of Mechanical Engineering, Iowa State University, Ames, IA

Abstract

Recent improvements in machine vision algorithms have led to closed-circuit television (CCTV) cameras emerging as an important data source for determining of the state of traffic congestion. In this study we used two different deep learning techniques, you only look once (YOLO) and deep convolution neural network (DCNN), to detect traffic congestion from camera images. The support vector machine (SVM), a shallow algorithm, was also used as a comparison to determine the improvements obtained using deep learning algorithms. Occupancy data from nearby radar sensors were used to label congested images in the dataset and for training the models. YOLO and DCCN achieved 91.5% and 90.2% accuracy, respectively, whereas SVM’s accuracy was 85.2%. Receiver operating characteristic curves were used to determine the sensitivity of the models with regard to different camera configurations, light conditions, and so forth. Although poor camera conditions at night affected the accuracy of the models, the areas under the curve from the deep models were found to be greater than 0.9 for all conditions. This shows that the models can perform well in challenging conditions as well.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3