Regulation of mixed convective flow in a horizontal channel with multiple slots using P, PI, and PID controllers

Author:

Debnath Sonjoy Chandra1ORCID,Chowdhury Shuvo1ORCID,Asaduzzaman Md1ORCID,Nahar Most. Naznin1ORCID,Sattar Ankita Binte1ORCID,Saha Sumon1ORCID

Affiliation:

1. Department of Mechanical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh

Abstract

AbstractThis study numerically investigates mixed convective cooling in a two‐dimensional horizontal channel containing periodically heated blocks by applying proportional (P), proportional‐integral (PI), and proportional‐integral‐derivative (PID) controllers. Three different controller configurations regulate the amount of cold air entering the chamber. The air's non‐dimensional temperature is continuously monitored at the set point to compare the controllers’ performance, and the percentage of overshoot and the steady‐state error are analysed. The investigated chamber comprises one inlet and two exit ports, a temperature sensor, and two heated blocks that are isotherm heat sources. The Galerkin finite element approach computationally solves the equations of continuity, momentum, and energy to analyse the thermo‐fluid phenomena occurring within the chamber. Parametric simulation is carried for different values of the proportional gain (Kp = 0.005, 0.010, 0.050 m s−1 K−1), the integral gain (Ki = 0.05, 0.10, 0.15 m s−2 K−1), the derivative gain (Kd = 10−5, 10−4, 10−3 m K−1) to achieve a consistent and expeditious response. Variations of Reynolds, Richardson, and mean Nusselt numbers with time are plotted to compare the system's performance. The investigation indicates that the PI controller produces a comparable level of performance with the PID controller, reducing the necessity to add a derivative controller.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3