Electret prevents the formation of bacterial biofilm

Author:

Sun Zhipeng1,Wang Hongbao2,Guo Xin1,Xu Jiajie1,Liang Hejuan1,Jiang Jian1,Liang Yuanyuan1ORCID

Affiliation:

1. Department of Physics and Mathematics Faculty of Military Health Service Naval Medical University Shanghai China

2. School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China

Abstract

AbstractBacterial biofilm formation is an important factor in bacterial resistance. The commonly used methods to inhibit bacterial biofilms are synthetic drugs such as antimicrobial peptides, but physical methods are often safe, non‐toxic and simple to prepare. This work proposes an environmentally friendly method to use electret films to provide a stable electric field during the formation of bacterial biofilms, inhibit the formation of bacterial biofilms through the action of the electric field and weaken the adhesion of bacterial biofilms. The total amount of Staphylococcus aureus biofilm decreased by 20% compared to the control group after the treatment of positive electret. The distribution of exopolysaccharides showed that the activity of biofilm also decreased. In addition, the negative electret can also inhibit the formation of bacterial biofilm. The result can be generalised to other Gram‐positive bacteria and could contribute to reduce the resistance of bacteria, improve the effect of related antibiotics, reduce the dosage of antibiotics and reduce the side effects of drugs.

Publisher

Institution of Engineering and Technology (IET)

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3