Traditional fault diagnosis methods for mineral oil‐immersed power transformer based on dissolved gas analysis: Past, present and future

Author:

Nanfak Arnaud1ORCID,Samuel Eke1,Fofana Issouf2,Meghnefi Fethi2,Ngaleu Martial Gildas1ORCID,Hubert Kom Charles1

Affiliation:

1. Laboratory of Energy, Materials, Modelling and Methods National Higher Polytechnic School of Douala University of Douala Douala Cameroon

2. Canada Research Chair Tier 1, in Aging of Oil‐Filled Equipment on High Voltage Lines (ViAHT) University of Quebec at Chicoutimi, Chicoutimi (UQAC) Chicoutimi Quebec Canada

Abstract

AbstractA key factor in ensuring the efficient and safe operation of power transformers is the early and accurate diagnosis of incipient faults. Among the tools available to achieve this goal, dissolved gas analysis (DGA) is widely used by power transformers' maintenance professionals. It is a preventive maintenance tool, used for condition monitoring, fault diagnosis and unplanned outage prevention. With the development of artificial intelligence (AI), many intelligent‐based methods using AI tools have been proposed in the literature for DGA data interpretation. Although these methods achieve high diagnostic accuracies and improve DGA efficiency, they are generally complicated and the research documented in these publications is difficult to replicate. Traditional DGA‐based methods are simple, easy to understand and implement, and widely used by power transformers' maintenance professionals. Many methods proposed in recent years overcome the limitations of the pioneer methods and are increasingly effective. The authors present a detailed and comprehensive literature review of the traditional DGA‐based methods for mineral oil‐immersed power transformer faults diagnosis. This review also addresses ways to improve the efficiency of the available traditional methods. Some pitfalls that need to be taken into account to improve the efficiency of the DGA‐based diagnostic methods are also presented.

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3