An Intelligent Power Transformers Diagnostic System Based on Hierarchical Radial Basis Functions Improved by Linde Buzo Gray and Single-Layer Perceptron Algorithms

Author:

Hendel Mounia1,Bousmaha Imen Souhila23ORCID,Meghnefi Fethi4ORCID,Fofana Issouf4ORCID,Brahami Mostefa2

Affiliation:

1. Electrical Engineering and Materials Laboratory, Higher School of Electrical and Energy Engineering, Oran 31000, Algeria

2. Intelligent Control and Electrical Power System, Djilali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes 22000, Algeria

3. ESSA-Tlemcen, Ecole Supérieure en Sciences Appliquées de Tlemcen, ESSA-Tlemcen, BP 165 RP Bel Horizon, Tlemcen 13000, Algeria

4. Canada Research Chair, Tier 1, ViAHT, Department of Applied Sciences, University Québec, Chicoutimi, QC G7H 2B1, Canada

Abstract

Transformers are fundamental and among the most expensive electrical devices in any power transmission and distribution system. Therefore, it is essential to implement powerful maintenance methods to monitor and predict their condition. Due to its many advantages—such as early detection, accurate diagnosis, cost reduction, and rapid response time—dissolved gas analysis (DGA) is regarded as one of the most effective ways to assess a transformer’s condition. In this contribution, we propose a new probabilistic hierarchical intelligent system consisting of five subnetworks of the radial basis functions (RBF) type. Indeed, hierarchical classification minimizes the complexity of the discrimination task by employing a divide-and-conquer strategy, effectively addressing the issue of unbalanced data (a significant disparity between the categories to be predicted). This approach contributes to a more precise and sophisticated diagnosis of transformers. The first subnetwork detects the presence or absence of defects, separating defective samples from healthy ones. The second subnetwork further classifies the defective samples into three categories: electrical, thermal, and cellulosic decomposition. The samples in these categories are then precisely assigned to their respective subcategories by the third, fourth, and fifth subnetworks. To optimize the hyperparameters of the five models, the Linde–Buzo–Gray algorithm is implemented to reduce the number of centers (radial functions) in each subnetwork. Subsequently, a single-layer perceptron is trained to determine the optimal synaptic weights, which connect the intermediate layer to the output layer. The results obtained with our proposed system surpass those achieved with another implemented alternative (a single RBF), with an average sensitivity percentage as high as 96.85%. This superiority is validated by a Student’s t-test, showing a significant difference greater than 5% (p-value < 0.001). These findings demonstrate and highlight the relevance of the proposed hierarchical configuration.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3