Affiliation:
1. School of Information Engineering Huzhou University Huzhou China
2. Intelligent Perception and Control Center Huzhou Institute of Zhejiang University Huzhou China
3. Institute of Cyber‐Systems and Control Zhejiang University Hangzhou China
Abstract
AbstractAs a special case of common object removal, image person removal is playing an increasingly important role in social media and criminal investigation domains. Due to the integrity of person area and the complexity of human posture, person removal has its own dilemmas. In this paper, a novel idea is proposed to tackle these problems from the perspective of data synthesis. Concerning the lack of a dedicated dataset for image person removal, two dataset production methods are proposed to automatically generate images, masks and ground truths, respectively. Then, a learning framework similar to local image degradation is proposed so that the masks can be used to guide the feature extraction process and more texture information can be gathered for final prediction. A coarse‐to‐fine training strategy is further applied to refine the details. The data synthesis and learning framework combine well with each other. Experimental results verify the effectiveness of the method quantitatively and qualitatively, and the trained network proves to have good generalization ability either on real or synthetic images.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献