A graph‐based edge attention gate medical image segmentation method

Author:

Hao Dechen1ORCID,Li Hualing1ORCID

Affiliation:

1. College of Software North University of China Taiyuan Shanxi China

Abstract

AbstractFor the purpose of solving the problems of missing edges and low segmentation accuracy in medical image segmentation, a medical image segmentation network (EAGC_UNet++) based on residual graph convolution UNet++ with edge attention gate (EAG) is proposed in the study. With UNet++ as the backbone network, the idea of graph theory is introduced into the model. First, the dropout residual graph convolution block (DropRes_GCN Block) and the traditional convolution structure in UNet++ are used as encoders. Second, EAGs are adopted so that the model pays more attention to image edge features during decoding. Finally, aiming at the imbalance problem of positive and negative samples in medical image segmentation, a new weighted loss function is introduced to enhance segmentation accuracy. In the experimental part, three datasets (LiTS2017, ISIC2018, COVID‐19 CT scans) were used to evaluate the performances of various models; multiple groups of ablation experiments were designed to verify the effectiveness of each part of the model. The experimental results showed that EAGC_UNet++ had better segmentation performance than the other models under three quantitative evaluation indicators and better solved the problem of missing edges in medical image segmentation.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Signal Processing,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3