VGA‐Net: Vessel graph based attentional U‐Net for retinal vessel segmentation

Author:

Jalali Yeganeh1,Fateh Mansoor1ORCID,Rezvani Mohsen1

Affiliation:

1. Faculty of Computer Engineering Shahrood University of Technology Shahrood Iran

Abstract

AbstractSegmentation is crucial in diagnosing retinal diseases by accurately identifiying retinal vessels. This paper addresses the complexity of segmenting retinal vessels, highlighting the need for precise analysis of blood vessel structures. Despite the progress made by convolutional neural networsks (CNNs) in image segmentation, their limitations in capturing the global structure of retinal vsessels and maintaining segmentation continuity present challenges. To tackle these issues, our proposed network integrates graph convolutional networks (GCNs) and attention mechansims. This allows the model to consider pixel relationships and learn vessel graphical structures, significantly improving segmentation accuracy. Additionally, the attentional feature fusion module, including pixel‐wise and channel‐wise attention mechansims within the U‐Net architecture, refines the model's focus on relevant features. This paper emphasizes the importance of continuty preservation, ensuring an accurate representation of pixel‐level information and structural details during sefmentation. Therefore, our method performs as an effective solution to overcome challenges in retinal vessel segmentation. The proposed method outperformed the state‐of‐the‐art approaches on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structed Analysis of the Retina) datasets with accuracies of 0.12% and 0.14%, respecttively. Importantly, our proposed approach excelled in delineating slender and diminutive blood vessels, crucial for diagnosing vascular‐related diseases. Implementation is accessible on https://github.com/CVLab‐SHUT/VGA‐Net.

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3