Affiliation:
1. Faculty of Computer Engineering Shahrood University of Technology Shahrood Iran
Abstract
AbstractSegmentation is crucial in diagnosing retinal diseases by accurately identifiying retinal vessels. This paper addresses the complexity of segmenting retinal vessels, highlighting the need for precise analysis of blood vessel structures. Despite the progress made by convolutional neural networsks (CNNs) in image segmentation, their limitations in capturing the global structure of retinal vsessels and maintaining segmentation continuity present challenges. To tackle these issues, our proposed network integrates graph convolutional networks (GCNs) and attention mechansims. This allows the model to consider pixel relationships and learn vessel graphical structures, significantly improving segmentation accuracy. Additionally, the attentional feature fusion module, including pixel‐wise and channel‐wise attention mechansims within the U‐Net architecture, refines the model's focus on relevant features. This paper emphasizes the importance of continuty preservation, ensuring an accurate representation of pixel‐level information and structural details during sefmentation. Therefore, our method performs as an effective solution to overcome challenges in retinal vessel segmentation. The proposed method outperformed the state‐of‐the‐art approaches on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structed Analysis of the Retina) datasets with accuracies of 0.12% and 0.14%, respecttively. Importantly, our proposed approach excelled in delineating slender and diminutive blood vessels, crucial for diagnosing vascular‐related diseases. Implementation is accessible on https://github.com/CVLab‐SHUT/VGA‐Net.
Publisher
Institution of Engineering and Technology (IET)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献