WaveSeg‐UNet model for overlapped nuclei segmentation from multi‐organ histopathology images

Author:

Khan Hameed Ullah1,Raza Basit1,Khan Muhammad Asad Iqbal1,Faheem Muhammad1ORCID

Affiliation:

1. Computer Science Department Comsats University Islamabad Islamabad Pakistan

Abstract

AbstractNuclei segmentation is a challenging task in histopathology images. It is challenging due to the small size of objects, low contrast, touching boundaries, and complex structure of nuclei. Their segmentation and counting play an important role in cancer identification and its grading. In this study, WaveSeg‐UNet, a lightweight model, is introduced to segment cancerous nuclei having touching boundaries. Residual blocks are used for feature extraction. Only one feature extractor block is used in each level of the encoder and decoder. Normally, images degrade quality and lose important information during down‐sampling. To overcome this loss, discrete wavelet transform (DWT) alongside max‐pooling is used in the down‐sampling process. Inverse DWT is used to regenerate original images during up‐sampling. In the bottleneck of the proposed model, atrous spatial channel pyramid pooling (ASCPP) is used to extract effective high‐level features. The ASCPP is the modified pyramid pooling having atrous layers to increase the area of the receptive field. Spatial and channel‐based attention are used to focus on the location and class of the identified objects. Finally, watershed transform is used as a post processing technique to identify and refine touching boundaries of nuclei. Nuclei are identified and counted to facilitate pathologists. The same domain of transfer learning is used to retrain the model for domain adaptability. Results of the proposed model are compared with state‐of‐the‐art models, and it outperformed the existing studies.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3