Bayesian‐Edge system for classification and segmentation of skin lesions in Internet of Medical Things

Author:

Naseem Shahid1,Anwar Muhammad1,Faheem Muhammad2ORCID,Fayyaz Muhammad3,Malik Muhammad Sheraz Arshad4

Affiliation:

1. Department of Information Sciences Division of Science and Technology University of Education Lahore Pakistan

2. School of Technology and Innovations University of Vaasa Vaasa Finland

3. Department of Computer Science FAST National University of Computer & Emerging Sciences Chiniot‐Faisalabad Campus Islamabad Pakistan

4. Department of Software Engineering Government College University Faisalabad Faisalabad Pakistan

Abstract

AbstractBackgroundSkin diseases are severe diseases. Identification of these severe diseases depends upon the abstraction of atypical skin regions. The segmentation of these skin diseases is essential to rheumatologists in risk impost and for valuable and vital decision‐making. Skin lesion segmentation from images is a crucial step toward achieving this goal—timely exposure of malignancy in psoriasis expressively intensifies the persistence ratio. Defies occur when people presume skin diseases they have without accurately and precisely incepted. However, analyzing malignancy at runtime is a big challenge due to the truncated distinction of the visual similarity between malignance and non‐malignance lesions. However, images' different shapes, contrast, and vibrations make skin lesion segmentation challenging. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation.Materials and methodsThis paper introduces a skin lesions segmentation model that integrates two intelligent methodologies: Bayesian inference and edge intelligence. In the segmentation model, we deal with edge intelligence to utilize the texture features for the segmentation of skin lesions. In contrast, Bayesian inference enhances skin lesion segmentation's accuracy and efficiency.ResultsWe analyze our work along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions from seminal works and a systematic viewpoint and examine how these dimensions have influenced current trends.ConclusionWe summarize our work with previously used techniques in a comprehensive table to facilitate comparisons. Our experimental results show that Bayesian‐Edge networks can boost the diagnostic performance of skin lesions by up to 87.80% without incurring additional parameters of heavy computation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3