Quantifying the performance and optimizing the placement of roadside sensors for cooperative vehicle‐infrastructure systems
Author:
Affiliation:
1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education Tongji University Shanghai China
2. Shanghai Engineering Research Center of Urban Infrastructure Renewal Shanghai China
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12185
Reference46 articles.
1. C‐ITS road‐side unit deployment on highways with ITS road‐side systems: A techno‐economic approach
2. Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning
3. Online parking assignment in an environment of partially connected vehicles: A multi-agent deep reinforcement learning approach
4. Vehicle sensor data-based transportation research: Modeling, analysis, and management
5. A Novel Spatio-Temporal Synchronization Method of Roadside Asynchronous MMW Radar-Camera for Sensor Fusion
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Roadside LiDAR placement for cooperative traffic detection by a novel chance constrained stochastic simulation optimization approach;Transportation Research Part C: Emerging Technologies;2024-10
2. A Rapid and Convenient Spatiotemporal Calibration Method of Roadside Sensors Using Floating Connected and Automated Vehicle Data;IEEE Transactions on Intelligent Transportation Systems;2024-09
3. Considering traffic characteristics: Roadside unit deployment optimization algorithm based on dynamic division of road network subareas;IET Intelligent Transport Systems;2024-08-27
4. Graph Matching-Based Spatiotemporal Calibration of Roadside Sensors in Cooperative Vehicle-Infrastructure Systems;IEEE Transactions on Intelligent Transportation Systems;2024-08
5. AI‐Assisted Self‐Powered Vehicle‐Road Integrated Electronics for Intelligent Transportation Collaborative Perception;Advanced Materials;2024-07-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3