Considering traffic characteristics: Roadside unit deployment optimization algorithm based on dynamic division of road network subareas

Author:

Zhang Chuyao1ORCID,Wang Jiangfeng1ORCID,Luo Dongyu1,Yang Hao1,Yao Jingxuan1

Affiliation:

1. School of Traffic and Transportation Beijing Jiaotong University Beijing China

Abstract

AbstractGiven that the overall coverage deployment method fails to meet information needs in important areas, there are redundancies and deficiencies in the information provided. To enhance communication stability for roadside units (RSUs), improve information coverage at critical intersections and optimize algorithm efficiency. Here, a method for deploying RSUs is proposed that aims to optimize revenue in road network subareas. The road network is divided into several subareas based on critical intersections, node similarity, road segment correlations, and characteristics of RSU information transmission. Then, a roadway accessibility algorithm is developed that accounts for channel fading. Considering the robustness of wire network deployment, an improved traveling salesman problem (TSP) problem is proposed that includes candidate locations and constructs a model for optimal RSU deployment that maximizes consolidated revenue. Finally, using the Sioux Falls network as an example, the RSU deployment strategy is evaluated for the overall network and the road network after being subdivided. The results indicate that subdividing the road network improves the efficiency of the optimization solution, the information coverage of critical intersections increases by 1.8 times. The deployment optimization scheme of RSUs is directly influenced by various parameters such as bandwidth capacity and cost coefficient. When deploying RSUs in road network subareas, variations in total demand have minimal impact on RSU deployment, ensuring a stable deployment scheme.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3