REUSE OF REVERSE OSMOSIS ELEMENTS OF THE DESALINATION PROCESSES

Author:

LEON ZERPA FEDERICO,PEÑATE SUAREZ BALTASARORCID,ROO FILGUEIRA FRANCISCO JAVIERORCID,VASWANI JENIFER

Abstract

This paper is based on the study for the evaluation of the processes of reuse and recycling of reverse osmosis components and membranes in the Canary Islands and Macaronesia, within the DESAL+ project and in the framework of the DESAL+ LIVING LAB platform, coordinated by the Canary Islands Technological Institute (ITC) and the Canary Islands Agency for Research, Innovation and Information Society (ACIISI), with the support of the Interreg-MAC Programme. Reverse osmosis membranes could be reused in the same or another desalination plant by replacing the membranes in the first, dirtier positions with those in the last, less damaged positions. Also, by changing the best first-stage membranes to the second and vice versa, the useful life of these membranes could be extended through chemical cleaning and a second life could be given in tertiary treatment plants, reuse in industrial processes where they use special reverse osmosis membranes and degrade rapidly, in processes with leachate from landfill waste and also an interesting option is the oxidation of reverse osmosis elements to obtain nano-filtration, ultrafiltration or micro-filtration membranes for the removal of physical dirt. The main categories of thermal processing recycling commonly used in industry include incineration and pyrolysis to produce energy, gas and fuel. These processes can be applied to mixed plastic waste, such as the combination of materials used in the manufacture of reverse osmosis membranes. The recycling of reverse osmosis elements from desalination plants is shown as an opportunity, nowadays existing pioneering initiatives in Europe. Energy recovery, via incineration, is feasible but is not considered in accordance with the environmental, social and political problems that this may generate. However, the recycling of the reverse osmosis elements via pyrolytic industry for fuel production can be centralized in a new industry already planned in the Canary Islands and all the osmosis membranes that are obsolete can be sent there. This is a technically and economically viable business opportunity with a promising future in today's recycling market as studied in the paper.

Publisher

Publicaciones DYNA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3