Advances in Drinking Water Treatment through Piloting with UF Membranes

Author:

Leon-Zerpa Federico A.1ORCID,Vaswani-Reboso Jenifer1ORCID,Tavares Tomas2,Ramos-Martín Alejandro1ORCID,Mendieta-Pino Carlos A.1ORCID

Affiliation:

1. Departamento de Ingeniería de Procesos, Universidad de las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

2. Faculdade de Ciências e Tecnologia, Escola de Ciências Agrárias e Ambientais, Universidade de Cabo Verde, Praia CP 7943-010, Cape Verde

Abstract

This manuscript presents the advances of a pilot testing, located in Spain, using ultrafiltration (UF) membranes to supply drinking water. These results could be extended to the islands of the Macaronesia area, for instance, Azores, Madeira, Canaries, and Cape Verde. The UF project targeted by the pilot activity is a refurbishment of an existing installation. The existing installation is located at a higher altitude, thus drinking water could be supplied to most of the island without further pumping, reducing the carbon footprint, ecological footprint, and energy consumption. The raw water is soft surface water (mainly of rainwater origin) coming from a dam. On the islands of Macaronesia, water is a scarce resource in high demand. Therefore, this is a technically and economically viable business opportunity with a promising future for isolated water treatment systems to produce drinking water on islands. The Macaronesia area is formed by volcanic islands with a small surface in the Atlantic Ocean, so usually there is not enough space for conventional technology and only a compact UF can be used. The raw water quality is not satisfactory and the municipality receives many complaints from end users, thus a potable water plant with UF membranes is in high demand to supply drinking water of good quality. Membrane processes can be categorized into various, related methods, three of which include the following: pore size, molecular weight cut-off, and operating pressure. Regarding the obtained results, the UF system successfully produced excellent filtrate quality with turbidity readings on average less than 0.03 NTU; furthermore, membrane instantaneous flux of 90 Lmh at 14 °C is achievable with long-term stability under various feed water conditions, peak operations are available at 105 Lmh without a large impact on the filtration performance of the modules, and CIP is only to be performed if the TMP increase reaches the terminal point.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3