Biomechanical evaluation of a new gliding screw concept for the fixation of proximal humeral fractures

Author:

Acklin Y. P.1,Zderic I.1,Inzana J. A.1,Grechenig S.2,Schwyn R.1,Richards R. G.1,Gueorguiev B.1

Affiliation:

1. AO Research Institute Davos, Davos, Switzerland

2. Universitätsklinikum, Regensburg, Klinik und Poliklinik für Unfallchirurgie, Regensburg, Germany

Abstract

Aims Plating displaced proximal humeral fractures is associated with a high rate of screw perforation. Dynamization of the proximal screws might prevent these complications. The aim of this study was to develop and evaluate a new gliding screw concept for plating proximal humeral fractures biomechanically. Methods Eight pairs of three-part humeral fractures were randomly assigned for pairwise instrumentation using either a prototype gliding plate or a standard PHILOS plate, and four pairs were fixed using the gliding plate with bone cement augmentation of its proximal screws. The specimens were cyclically tested under progressively increasing loading until perforation of a screw. Telescoping of a screw, varus tilting and screw migration were recorded using optical motion tracking. Results Mean initial stiffness (N/mm) was 581.3 (sd 239.7) for the gliding plate, 631.5 (sd 160.0) for the PHILOS and 440.2 (sd 97.6) for the gliding augmented plate without significant differences between the groups (p = 0.11). Mean varus tilting (°) after 7500 cycles was comparable between the gliding plate (2.6; sd 1.9), PHILOS (1.2; sd 0.6) and gliding augmented plate (1.7; sd 0.9) (p = 0.10). Similarly, mean screw migration(mm) after 7500 cycles was similar between the gliding plate (3.02; sd 2.85), PHILOS (1.30; sd 0.44) and gliding augmented plate (2.83; sd 1.18) (p = 0.13). Mean number of cycles until failure with 5° varus tilting were 12702 (sd 3687) for the gliding plate, 13948 (sd 1295) for PHILOS and 13189 (sd 2647) for the gliding augmented plate without significant differences between the groups (p = 0.66). Conclusion Biomechanically, plate fixation using a new gliding screw technology did not show considerable advantages in comparison with fixation using a standard PHILOS plate. Based on the finding of telescoping of screws, however, it may represent a valid approach for further investigations into how to avoid the cut-out of screws. Cite this article: Y. P. Acklin, I. Zderic, J. A. Inzana, S. Grechenig, R. Schwyn, R. G. Richards, B. Gueorguiev. Biomechanical evaluation of a new gliding screw concept for the fixation of proximal humeral fractures. Bone Joint Res 2018;7:422–429. DOI: 10.1302/2046-3758.76.BJR-2017-0356.R1.

Publisher

British Editorial Society of Bone & Joint Surgery

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3