Affiliation:
1. Royal Infirmary of Edinburgh, Department of Orthopaedics, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA, UK.
Abstract
Stems improve the mechanical stability of tibial components in total knee replacement (TKR), but come at a cost of stress shielding along their length. Their advantages include resistance to shear, reduced tibial lift-off and increased stability by reducing micromotion. Longer stems may have disadvantages including stress shielding along the length of the stem with associated reduction in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic fracture and end-of-stem pain. These features make long stems unattractive in the primary TKR setting, but often desirable in revision surgery with bone loss and instability. In the revision scenario, stems are beneficial in order to convey structural stability to the construct and protect the reconstruction of bony defects. Cemented and uncemented long stemmed implants have different roles depending on the nature of the bone loss involved.This review discusses the biomechanics of the design of tibial components and stems to inform the selection of the component and the technique of implantation.
Publisher
British Editorial Society of Bone & Joint Surgery
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献