Stacked megafans of the Kalahari Basin as archives of paleogeography, river capture, and Cenozoic paleoclimate of southwestern Africa

Author:

Houben Georg J.1,Kaufhold Stephan1,Miller Roy McG2,Lohe Christoph1,Hinderer Matthias3,Noll Meike3,Hornung Jens3,Joseph Reginalda4,Gerdes Axel56,Sitnikova Maria1,Quinger Martin1

Affiliation:

1. Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

2. Consulting Geologist, PO Box 11222, Windhoek 11009, Namibia

3. Institute for Applied Geosciences, Technical University of Darmstadt, Germany

4. Ministry of Agriculture, Water and Forestry, Windhoek, Namibia

5. Department of Geosciences, Goethe University, Frankfurt, Germany

6. Frankfurt Isotope and Element Research Center (FIERCE), Goethe University, Frankfurt, Germany

Abstract

ABSTRACT The Cenozoic Kalahari Basin covers large parts of southern Africa. A continuous 400 m core was obtained in northern Namibia and analyzed in detail. Here, we present sedimentological, geochemical, mineralogical, granulometric, and hydraulic data, which were used to derive the sedimentation history and the Cenozoic paleoclimate and paleogeography of SW Africa. The first absolute ages for the Kalahari Basin were obtained by dating of calcretes, which showed that the core covers almost the entire Cenozoic. Two megafans could be distinguished. The older, buried Olukonda Megafan stems from a mafic source rock, potentially the Kunene Intrusive Complex, and was deposited by a paleo–Kunene River towards the southeast and east, under a semiarid climate. The younger Cubango Megafan (Andoni Formation) has a completely different provenance, namely felsic metamorphic and granitoid rocks, transported from the north by the Cubango River. The capture of the Kunene towards the Atlantic during the Eocene resulted in this change in provenance. Despite the distinct differences between the formations, the temporal hiatus between them must have been short. The results are a showcase of the potential of megafans for hosting major deep freshwater aquifers.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3