Late Neogene terrestrial climate reconstruction of the central Namib Desert derived by the combination of U–Pb silcrete and terrestrial cosmogenic nuclide exposure dating

Author:

Ritter BenediktORCID,Albert RichardORCID,Rakipov Aleksandr,Van der Wateren Frederik M.ORCID,Dunai Tibor J.ORCID,Gerdes AxelORCID

Abstract

Abstract. The chronology of the Cenozoic “Namib Group” of the Namib Desert is rather poorly understood and lacks direct radiometric dating. Thus, the paleoclimate and landscape evolution of the central Namib Desert remains imprecise, complicating the detailed search for global and/or local forcing factors for the aridification of the Namib. The widespread occurrence of calcretes and silcretes in the Namib Desert allows us to apply the novel application of the U–Pb laser ablation dating technique on silcretes and calcretes to date important phases of landscape stability and to retrieve critical paleoclimatic and environmental information on desertification and its paleoclimatic variability. Microscale silcrete formation (maximum of 8 mm) due to pressure solution by expanding calcrete cementation provides the opportunity to date multiple phases (multiple generations of silcrete as growing layers or shells) of silcrete formation. Groundwater silcrete and calcrete formation occurred at our study site during the Pliocene, a period of relatively stable climate and landscape conditions under semi-arid to arid conditions. Terrestrial cosmogenic nuclide (TCN) exposure ages from flat canyon rim surfaces indicate the cessation of groundwater calcrete formation due to incision during the Late Pliocene–Early Pleistocene and mark a large-scale landscape rejuvenation due to climate shifts towards more arid conditions in the Pleistocene, which can be connected to global climate patterns. This study demonstrates the feasibility of applying U–Pb laser ablation to groundwater silcrete and calcretes, discusses several important issues associated with this technique, and opens up the possibility of dating numerous sedimentary sequences containing silcretes and calcretes in arid environments. In particular, the use of silcretes (as described above) reduces potential effects of detrital components and bulk signal measurements by using massive calcretes. Our study redefines and improves the generally accepted Late Cenozoic chronostratigraphy of the Namib Desert (Miller, 2008).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3