Depositional system and lake-stage control on microbialite morphology, Green River Formation, eastern Uinta Basin, Colorado and Utah, U.S.A.

Author:

Eljalafi Abdulah1,Sarg J. Frederick1

Affiliation:

1. Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, U.S.A.

Abstract

ABSTRACT Lake-margin lacustrine carbonates of the Green River Formation, in the eastern Uinta basin of Colorado and Utah, occur interbedded with fluvial and shoreline-parallel sandstone and shale. Microbial bindstones were deposited in a saline-alkaline lake during and after the Early Eocene Climate Optimum (EECO) (52–50 million years ago) that is characterized by global hot-house conditions, elevated atmospheric CO2, and highly fluctuating climate conditions. The stratigraphic architecture, chemostratigraphy, and morphology of the microbialites and other associated carbonate beds can be related to these climatic conditions. Three facies associations are recognized in the carbonate units across the lake margin from upper littoral to lower sublittoral environments: facies association 1, delta proximal non-microbial carbonates, characterized by quartzose bioclastic, peloidal, intraclastic packstones and grainstones–rudstones, quartose peloid wackestones and sandy oil shale; facies association 2, microbialite associated non-microbial carbonates, composed of ostracod, ooilitic, peloidal packstones–grainstones and intraclastic packstones, grainstones and rudstones; and facies association 3, microbial carbonates, consisting of diverse forms of stromatolitic and thrombolitic lithofacies. Multiple scales of carbonate cyclicity are suggested by shifts of δ18O and δ13C stable isotopes and deepening-upward microbialite facies. High-frequency cycles, on the order of 1 to 5 m thickness, are characterized by positive shifts in stable isotopes and interpreted deepening trends from littoral to lower sublittoral conditions. Large-scale trends, on the order of tens to hundreds of meters thickness record long-term lake changes, including: 1) sparse microbialite deposition during initial fresh conditions in lake stage 1, with low macro-structure diversity and light δ18O and δ13C isotope values; 2) transitional lake stage 2 corresponding to moderate macro-structural diversity, large meter-scale biostromal and biohermal buildups, and a positive shift in δ18O and δ13C isotope values that suggest increasing saline and alkaline conditions; 3) a highly fluctuating lake stage 3 that contains the highest microbialite macro-structural diversity and marks the interval of heaviest δ18O and δ13C isotope values, suggesting the greatest lake restriction, and the highest salinity and alkalinity conditions; and 4) a rising lake stage 4 that marks the lowest microbialite macro-structure diversity and a reversal in trend of δ18O and δ13C isotope values, that indicate deepening and freshening conditions.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3