Environmental and microbial influence on chemistry and dolomite formation in an ancient lake, Green River Formation (Eocene), Uinta basin, Utah, U.S.A.

Author:

Pommer Maxwell1,Sarg J. Frederick1,McFarlin Forrest1

Affiliation:

1. Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, U.S.A.

Abstract

ABSTRACT Integrated stratigraphic, petrographic, and geochemical data allow interpretation of biogeochemical and mineralization processes in paleoenvironmental context of ancient lacustrine environments. These indicate that lake chemistry, microbial processes, and organic matter (OM) strongly influenced dolomite formation in near-surface environments throughout deposition of the Green River Formation (Eocene, Uinta basin, Utah). The lower Green River Formation consists of interbedded fluvio-deltaic siliciclastics, paleosols, carbonate mud, coated-grain carbonates, mollusk and ostracod limestones, and microbialites all landward of profundal OM-bearing illitic mudrocks. Calcite, dolomite, Fe-dolomite, and authigenic feldspars are common. Carbonate δ18O and δ13C are covariant, and positive excursions of carbonate δ13C (up to 6.9‰ VPDB) and organic-matter δ15N (up to 13.9‰ V-AIR) occur in profundal OM-bearing mudrocks. The upper Green River Formation consists mainly of laminated OM-lean and OM-rich dolomitic muds (i.e., “oil-shales”). Zoned dolomite crystals with Mg-calcite centers and Fe-dolomite rims are widespread in addition to authigenic feldspars and Na-carbonates. Carbonate δ13C-enrichment (up to 15.8‰ VPDB), and organic-matter δ15N-enrichment (up to 18.4‰ V-AIR) occur in these OM-rich dolomite muds. Organic-matter δ13C is relatively invariable (mean = –29.3‰ VPDB) and does not covary with carbonate δ13C. Trends in mineralogy, organic-matter abundance, and stable isotopes result from changing hydrologic systems, paleoclimate, lake chemistry and microbial processes coincident with the Early Eocene Climate Optimum. The lower Green River Formation paleo-lake was smaller in area and volume, heavily influenced by meteoric fluvial input, variably oxygenated, and ranged from neutral and fresh to alkaline and saline. Especially in littoral environments with abundant microbialites, dolomite formed through recrystallization of precursor carbonate involving both replacement of precursor carbonate and direct precipitation as cements and overgrowths. The upper Green River Formation paleo-lake was more expansive with widespread low-oxygen, nutrient-rich, and alkaline saline environments with increased planktic organic-matter productivity. Microbial decay of organic matter in low-oxygen environments produced alkaline lake waters through methanogenesis, possible denitrification, and bacterial sulfate reduction to a limited degree. This favored precipitation of widespread dolomite, as well as Na-carbonates, authigenic feldspars, and analcime from lake water and phreatic pore water. Extracellular polymeric substances (EPS) excreted by microbial communities provided favorable nucleation sites for Mg-carbonate, allowing kinetic barriers of low-temperature dolomite formation to be overcome. Cycling of pH due to turnover of organic matter and associated microbial processes potentially bolstered EPS generation and abiotic environmental conditions favorable to dolomite precipitation. It is likely that metastable precursor carbonate was recrystallized to ordered dolomite, but it is possible that direct precipitation occurred. Fe-dolomite overgrowths precipitated after dolomite where microbial Fe reduction occurred in stagnant, oxygen-depleted, alkaline pore waters.

Publisher

Society for Sedimentary Geology

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3