Formation of detrital clay grain coats by dewatering of deep-water sands and significance for reservoir quality

Author:

Porten Kristin W.1,Warchoł Michał J.1,Kane Ian A.2

Affiliation:

1. Equinor ASA, N-5020 Bergen, Norway

2. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, U.K.

Abstract

ABSTRACTWell-developed detrital clay grain coats are observed in deep-marine sandstones of the Upper Cretaceous Springar Formation of the Vøring Basin in the Norwegian Sea. The detrital clay coats form thin and compact rims on individual sand grains and meniscus-shaped bridges between grains. These well-developed coats are found in high-density turbidites and proximal hybrid event beds with common to pervasive dewatering structures deposited in proximity to the base of a syndepositionally active basin high. Here, in one exploration well, detrital clay grain coats are common throughout a sandstone package 100 m thick. High-density turbidites and proximal and distal hybrid event beds drilled in mid- to distal-fan settings unaffected by seismically resolved seafloor topography show common dewatering features, but have only scattered detrital clay coats confined to individual dewatering pipes or dish structures. Hence, we propose that intense sediment dewatering has the potential to form detrital clay coats in deep-marine sandstones by a combination of elutriation and reorganization of clays during fluid escape from sediment bodies with pore fluid pressures significantly higher than the hydrostatic pressure. In submarine fan systems, deposition of sediment with coeval trapping of large volumes of interstitial pore fluid is most likely to occur where gravity flows undergo rapid deceleration in response to an abrupt decrease in confinement or gradient. Such environments include the channel–lobe transition and settings in proximity to seabed topography.The investigated sandstones are quartz arenites and subarkoses, with minor to moderate volumes of quartz cement (up to 6%). However, strongly to completely quartz-cemented intergranular pore space is observed where detrital clay coats or matrix does not cover quartz grains in the deepest part of the studied formation. Modeling of quartz cementation predicts that most intergranular macroporosity in the lower part of the Springar Formation would be quartz cemented if the sandstones were free of detrital clays. Based on our observations and modeling results we propose that intense sediment dewatering has the potential to form detrital clay coats, which can be important for retaining porosity in deeply buried sandstones and in basins with high present or past heat flow.

Publisher

Society for Sedimentary Geology

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3