Impact of sediment provenance and depositional setting on chlorite content in Cretaceous turbiditic sandstones, Norway

Author:

Azzam Fares1ORCID,Blaise Thomas1ORCID,Patrier Patricia2,Beaufort Daniel2,Barbarand Jocelyn1,Elmola Ahmed Abd2ORCID,Brigaud Benjamin1,Portier Eric3,Clerc Sylvain4

Affiliation:

1. Department of Geosciences Université Paris‐Saclay, CNRS, GEOPS Orsay France

2. Department of Geosciences Université de Poitiers, IC2MP—CNRS Poitiers France

3. 45‐8 Energy Metz France

4. Neptune Energy Norge AS Sandnes Norway

Abstract

AbstractChlorite minerals, mainly in the form of clay coats, play a critical role in determining the reservoir quality of siliciclastic rocks. They can positively influence reservoir quality by preserving porosity during deep burial, but they can also play a negative role by reducing permeability through pore filling. The main aim of this research is to determine the optimal conditions for chlorite growth in sedimentary basins. This study investigates the Lower Cretaceous turbidite sandstone of the Agat Formation in the North Sea. We used a source‐to‐sink approach to investigate the impact of sediment source composition, chemical weathering and depositional environment on chlorite formation. Understanding the interplay between these processes can help refine exploration and exploitation strategies, optimise hydrocarbon recovery, and reduce exploration risks. Representative samples from two hydrocarbon fields (the Duva and Agat fields) were investigated using petrography, geochemistry, heavy mineral identification and quantification, and U–Pb geochronology of detrital zircons. Our results show a strong heterogeneity in the sediment provenance between the two turbidite systems. In the Duva field, the sandstone is derived from a mixture of mafic and felsic sources, producing Fe‐rich sediments. Intense chemical weathering generates fine fraction materials rich in kaolinite, vermiculite, and hydroxy‐interlayered clays, which are transported into shallow marine settings. Subsequent interaction with seawater results in the formation of glauconitic materials, Fe‐illite, and phosphatic concretions. These Fe‐rich materials are remobilised into deep marine settings, providing precursors for the development of authigenic Fe‐clays such as berthierine and chlorite. Conversely, in the Agat field, the sandstone is predominantly sourced from felsic rocks that underwent low chemical weathering, producing sediment rich in quartz and feldspar with a low amount of clays. With few Fe‐rich materials transported into the basin, the development of chlorite in the Agat field was less pervasive. Basin configuration and depositional environment exerted additional control on chlorite distribution. In the confined turbidite system (e.g. Duva field), chlorite is typically found as coating, whereas in less confined turbidite systems (e.g. Agat field) chlorite shows complex distribution related to depositional environment and dewatering processes. Our findings demonstrate the importance of considering the entire sediment routing system, from source to sink, when predicting chlorite occurrence and its impact on reservoir quality in deep marine settings. This integrated approach can guide exploration and development efforts in deepwater clastic reservoirs.

Funder

Neptune Energy Norge

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3