Abstract
На прикладі туристичної галузі розглянуто розроблений алгоритм вироблення комплексних рекомендацій щодо вибору клієнтами товару чи отримання послуги, що максимально мають відповідати їхнім уподобанням і збереженні клієнтів й прибутків туристичними фірмами. З'ясовано, що рекомендаційні алгоритми використовують у багатьох інтернет-системах для надання споживачеві поради стосовно вибору клієнтами товару чи отримання послуги, які найбільше відповідають його уподобанням. Незважаючи на значне поширення рекомендаційних систем у різноманітних галузях (електронна комерція, розваги, послуги, соціальні мережі тощо), залишається невирішеним питання, пов'язане з вибором конкретного алгоритмічного підходу для певної області застосування. Наявні алгоритми здебільшого опрацьовують прості об'єкти і не дають змоги якісно вирішити задачу конструювання рекомендації з окремих складових, враховуючи їх сумісність між собою та шукаючи найкращий варіант з можливих комбінацій. Побудовано новий алгоритм для комплексної рекомендації на підставі удосконалення алгоритму колаборативної фільтрації за рахунок комбінації методів, заснованих на сусідстві, пам'яті та моделі з використанням машинного навчання для коригування ступеня значущості характеристик складових елементів комплексного рішення. Рішення практично реалізовано у формі програмного модуля для рекомендації туристичної подорожі, яка описується місцем відпочинку, маршрутами, готелем та екскурсіями. Особливостями побудованого алгоритму є використання концепції рейтингу користувача для надання збалансованих оцінок елементам турів та коригування коефіцієнтів важливості складових подорожі методом машинного навчання, що дає змогу їх виокремити як параметри моделі рекомендування. Отримані результати порівняно з результатами простіших реалізацій колаборативної фільтрації (засновані на пам'яті та сусідстві). Побудований алгоритм демонструє найкращі результати (30-60) % рекомендацій, що відповідають очікуванням користувача. Недоліки алгоритму виявляються у разі малої кількості даних і їх розрідженості.
Publisher
Ukrainian National Forestry University
Reference15 articles.
1. Aggarwal, C. (2016). Neighborhood-Based Collaborative Filtering. Retrieved from: https://www.researchgate.net/publication/314921150_Neighborhood-Based_Collaborative_Filtering.
2. Bahramian, Z., Abbaspour, R., & Claramunt, T. (2018). Geospatial Collaborative Tourism Recommender Systems. In book: GIS Applications in the Tourism and Hospitality Industry. https://doi.org/10.4018/978-1-5225-5088-4.ch010
3. Blattmann, J. (2018). Netflix: Binging on the Algorithm. Retrieved from: https://uxplanet.org/netflix-binging-on-the-algorithm-a3a74a6c1f59
4. Bobadilla, J., Ortega, F., Hernando, A., & Bernal, J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems, 26, 225–238. https://doi.org/10.1016/j.knosys.2011.07.021
5. Brinton, C., & Chiang, M. (2019). Netflix Recommendation System. Retrieved from: https://www.coursera.org/lecture/networks-illustrated/netflix-recommendation-system-TYOZV.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RECOMMENDATION ALGORITHM USING DATA CLUSTERING;Ukrainian Journal of Information Technology;2022