Toward Geospatial Collaborative Tourism Recommender Systems

Author:

Bahramian Zahra1,Abbaspour Rahim Ali1,Claramunt Christophe2

Affiliation:

1. University of Tehran, Iran

2. Naval Academy Research Institute, France

Abstract

Tourism activities are highly dependent on spatial information. Finding the most interesting travel destinations and attractions and planning a trip are still open research issues to GIScience research applied to the tourism domain. Nowadays, huge amounts of information are available over the world wide web that may be useful in planning a visit to destinations and attractions. However, it is often time consuming for a user to select the most interesting destinations and attractions and plan a trip according to his own preferences. Tourism recommender systems (TRSs) can be used to overcome this information overload problem and to propose items taking into account the user preferences. This chapter reviews related topics in tourism recommender systems including different tourism recommendation approaches and user profile representation methods applied in the tourism domain. The authors illustrate the potential of tourism recommender systems as applied to the tourism domain by the implementation of an illustrative geospatial collaborative recommender system using the Foursquare dataset.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3