Abstract
<p style="text-align: justify;">This study aimed to determine the influence of critical thinking skills on misconceptions using a five-tier instrument in mixed-method research. The sampling technique used is simple random sampling. The data collection instrument used a critical thinking skills questionnaire, a misconception test of electric field material, and interviews. Data collection begins with quantitative data, providing a misconception test sheet and a critical thinking skills questionnaire. After that, the researcher took qualitative data in the form of interviews to strengthen data that had been obtained previously. Then from the results of the regression coefficients, there is an influence of critical thinking skills on misconceptions. The descriptive results of critical thinking skills data show that the mean of critical thinking skills is 68.50, which means that students' critical thinking skills are in a good category. Then from the results of the regression coefficients, there is an effect of critical thinking skills on a misconception, with the probability number obtained being significant. The limitations of this study are only to identify and see the impact.</p>
Publisher
Eurasian Society of Educational Research
Reference92 articles.
1. Abrahams, I., Homer, M., Sharpe, R., & Zhou, M. (2015). A comparative cross-cultural study of the prevalence and nature of misconceptions in physics amongst English and Chinese undergraduate students. Research in Science and Technological Education, 33(1), 111–130. https://doi.org/10.1080/02635143.2014.987744
2. Afrianita, L. (2021). Pengembangan tes diagnostik miskonsepsi berbentuk four-tier pada materi listrik statis [Development of the diagnostic test of four-tier misconceptions in static electricity] [Master's thesis, Universitas Jambi]. Repository Universitas Jambi. https://repository.unja.ac.id/23194/
3. Amrhein, V., Trafimow, D., & Greenland, S. (2019). Inferential statistics as descriptive statistics: There is no replication crisis if we don’t expect replication. American Statistician, 73(sup1), 262–270. https://doi.org/10.1080/00031305.2018.1543137
4. Ariani, T. (2020). Analysis of students ’ critical thinking skills in physics problems. Kasuari: Physics Education Journal, 3(1), 1–17. https://doi.org/10.37891/kpej.v3i1.119
5. Arieska, P. K., & Herdiani, N. (2018). Pemilihan teknik samping berdasarkan perhitungan efesiensi relatif [Selection of sampling techniques based on relative efficiency calculations]. Jurnal Statistika, 6(2), 166–171. https://bit.ly/3w91P3R
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献