A review on heat stress altering the insect life history strategies and underlying mechanisms: Special reference to an economically important Lepidoptera, Bombyx mori (Linnaeus, 1758) (Lepidoptera: Bombycidae)
-
Published:2023-06-30
Issue:202
Volume:51
Page:339-357
-
ISSN:2340-4078
-
Container-title:SHILAP Revista de lepidopterología
-
language:
-
Short-container-title:SHILAP Revta. lepid.
Author:
Ashraf HashimORCID, Qamar AyeshaORCID
Abstract
Lepidoptera is an order belonging to class Insecta consisting of Rhopalocera and Heterocera. B. mori belongs to this order and is the backbone of sericulture. Sericulture, the culture, rearing and maintenance of Bombyx mori (Linnaeus, 1785) for silk production, is widely practiced in India, contributing to its economy and providing livelihoods to many, especially those from lower socioeconomic backgrounds. Temperature and humidity affect silk production greatly. Heat shock genes and proteins protect B. mori to a certain extent from increased heat stress. However, outside this range, silkworm biology suffers. The silkworm adapts to heat by upregulating thermotolerance genes and proteins, especially heat shock proteins (HSPs). Produce different heat-resistant proteins at different temperatures. Larvae, embryos, and cocoons are affected by heat stress. Given the silkworm’s sensitivity to temperature and humidity and the alarming pace of climate change and global warming faced by the earth, it is necessary to consider solutions that will allow B. mori to adapt in the future decades. Molecular and enzymatic markers may help screen thermotolerant silkworm breeds. Given this insect’s temperature sensitivity, global warming and climate change may harm it even more than other insects. Therefore, to save this insect and the sericulture sector, steps must be taken in this direction.
Publisher
Sociedad Hispano-Luso-Americana de Lepidopterologia
Subject
Insect Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference117 articles.
1. Abhijith, A., Joy, A., Prathap, P., Vidya, M., Niyas, P. A., Madiajagan, B., Krishnan, G., Manimaran, A., Vakayil, B., Kurien, K., Sejian, V., & Bhatta, R. (2017). Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. Journal of Dairy, Veterinary & Animal Research, 5, 00127. https://doi.org/10.15406/jdvar.2017.05.00127 2. Basiricò, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., & Bernabucci, U. (2011). Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress and Chaperones, 16(4), 441-448. https://doi.org/10.1007/s12192-011-0257-7 3. Betts, R. A., Collins, M., Hemming, D. L., Jones, C. D., Lowe, J. A., & Sanderson, M. G. (2011). When could global warming reach 4ºC? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1934), 67-84. https://doi.org/10.1098/rsta.2010.0292 4. Bhat, M., Buhroo, Z., & Manjunatha, A. (2016). Harsh impact of temperature on proteomic profile of the silkworm Bombyx mori l. Journal of Cell and Tissue Research, 16(3), 5929-5935. 5. Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Dige, M. S., Bhushan, B., Chauhan, A., Kumar, A., & Singh, G. (2016). Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World, 9(2), 113-117. https://doi.org/10.14202/vetworld.2016.113-117
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|