STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities

Author:

Riesch-Oppermann Heinz1,Härtelt Martin1,Kraft Oliver12

Affiliation:

1. Forschungszentrum Karlsruhe, Institute for Materials Research II, Karlsruhe, Germany

2. Karlsruhe University, Institute for Reliability of Components and Systems, Karlsruhe, Germany

Abstract

Abstract The inherent brittleness of ceramics led to a probabilistic approach for designing with ceramic materials. For tackling this issue, numerous research projects led to the generation and continuous development of the weakest link postprocessor STAU over the last twenty years. Compared to other similar tools, STAU is unique in its comprehensive capabilities addressing spontaneous fracture, sub-critical crack propagation under transient loading, including a temperature-dependent fracture stress, and crack propagation parameters and analysis of strong stress gradients allowing for solving general thermo-mechanical problems including thermal shock and contact loading. Remarkably, the stress analysis, using commercial finite element codes, does not require a separate meshing with respect to the subsequent probabilistic analysis. Within the framework of a collaborative research effort (SFB 483) ceramics are qualified with respect to friction and wear for highly demanding applications. Here, uncertainty analysis methods for STAU were developed and led to an important extension of STAU for several technological applications. In this paper, the main features of STAU as well as the physical background are revisited and some application cases are shown.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3