Statistical analysis of micropore size distributions in Al–Si castings evaluated by X-ray computed tomography

Author:

Garb Christian1,Leitner Martin1,Tauscher Markus1,Weidt Moritz2,Brunner Roland3

Affiliation:

1. Montanuniversität Leoben , Department Product Engineering, Chair of Mechanical Engineering, Leoben , Austria

2. MAGMA Gießereitechnologie Gesellschaft für Gießerei- , Simulations- und Regeltechnik mbH, Aachen , Germany

3. Materials Center Leoben Forschung GmbH , Leoben , Austria

Abstract

Abstract In general, micropore size acts as one of the most significant influencing factors on the fatigue strength of aluminium castings. Hence, an in-depth knowledge of the occurrence of micropore sizes and their local distributions in different locations in complexly-shaped lightweight components is of great interest to the casting industry. In this work, the local properties of AlSi8Cu3 and AlSi7Cu0.5Mg cylinder heads and AlSi8Cu3 crankcases were analyzed. Extensive X-ray computed tomography (CT) scans of three specimen positions revealed significant differences in micropore size and distribution. Two CT scan resolutions were selected, with respect to different micropore size populations in the cast components, to enable accurate detection of the microporosity, in addition to an adequate scanning volume, in order to achieve a statistically approved parameter study. Thereby, specimen positions exhibiting smaller mean micropore sizes were scanned at 3 μm/voxel scanning resolution and ones with larger micropore sizes at 8 μm/voxel. A statistical assessment of all of the alloy specifications and specimen positions indicates that the general extreme value and lognormal distribution appropriately describe the micropore size distributions. Finally, an extensive sensitivity study is presented, aimed at examining micropore size characteristics, such as the porosity, sphericity, maximum and mean values and standard deviation, and to investigate their relationships in the investigated cast specimens.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3