Modelling the Impregnation of a Pressure-Tight Casting

Author:

Réger MihályORCID,Horváth RichárdORCID,Fábián Enikő RékaORCID,Réti TamásORCID

Abstract

AbstractPressure tightness is important for many die-cast aluminium castings, but the interconnected porosity formed in the aluminium alloy high-pressure die castings (HPDC) can form a network connecting several surfaces of the casting, especially as a result of machining after casting. The resulting potential leakage path can be imagined as a series of discontinuities varying in size over wide limits, where voids of different volumes are connected by channels of smaller cross section. Although vacuum impregnation is often used to ensure pressure-tightness is a robust technology, cavity systems through the casting can still cause leakage after impregnation. This study addresses the issues of the impregnation of discontinuities with a complex geometry. The elementary part of a complex cavity geometry consists of a cavity and a capillary channel. We estimated the limited permeability of the capillary section using a mathematical model based on the Hagen–Poiseuille equation. The calculation results prove that the degree of filling of the cavity with a capillary section is basically a function of the geometrical characteristics of the cavity, primarily the radius of the capillary. If the cavity system also contains a section with a diameter of less than 28 μm, impregnation does not necessarily ensure the gas tightness of the casting. Depending on the radius of the capillary, the impregnation of a cavity of a given volume and connected to the surface through a capillary section of a given length can produce three different results. Above a certain capillary radius, filling is complete, below a certain capillary radius only the capillary itself will contain resin, and between the two limit values, the partial impregnation of the cavity is expected but the capillary section is not filled.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3