Abstract
AbstractStress-strain-hysteresis, change in deformation-induced temperature and change in DC-based electrical resistance measurements are applied for the detailed characterization of structural-mechanical processes in construction materials and joints under multiple-step and single-step fatigue loading. Results concerning the influence of joining technologies on austenitic steel AISI304, carbon-fiber reinforced polymers (CFRP) and beech wood materials, of environmental media on magnesium alloys Mg-4Al-2Ba-2Ca (DieMag422) and Mg-10Gd-1Nd, and of manufacturing processes on titanium alloy Ti-6Al-4V and wood-plastic composites (WPC) are discussed. The load- and cycle-dependent change in microstructure was investigated by light and electron microscopy and correlated with fatigue properties, to reach a preferably precise description of process structure property relationship in a qualitative and quantitative manner. The time-efficient load increase procedure applied for evaluation of joining, environmental and manufacturing influence on fatigue performance is suitable for production-accompanied usage.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献