Influence of Transformation Temperature on the High‐Cycle Fatigue Performance of Carbide‐Bearing and Carbide‐Free Bainite

Author:

Gulbay Oguz1ORCID,Ackermann Marc1ORCID,Gramlich Alexander1ORCID,Durmaz Ali Riza2ORCID,Steinbach Ingo3ORCID,Krupp Ulrich1

Affiliation:

1. Steel Institute RWTH Aachen University 52072 Aachen Germany

2. Meso and Micromechanics Fraunhofer Institute for Mechanics of Materials IWM 79108 Freiburg Germany

3. Interdisciplinary Center for Advanced Material Simulations Ruhr Universität Bochum 44801 Bochum Germany

Abstract

This study investigates the high‐cycle‐fatigue (HCF) behavior of carbide‐bearing bainite (CBB) and carbide‐free bainite (CFB) fabricated at different transformation temperatures. The fatigue limit of each material is determined via staircase method using a 1 kHz resonant testing machine. A new load increase test is proposed as an efficient alternative to estimate the fatigue limit in HCF regimes. The assessment of the fatigue behavior is accompanied by data‐driven microstructural analyses via state‐of‐the‐art computer vision tools. The analyses reveal that the finer carbide distribution, which is obtained at lower transformation temperature, enhances the overall performance of CBB. Electron backscatter diffraction (EBSD) measurements of CFB before and after tensile testing evidence the transformation of retained austenite (RA) to martensite during deformation. The finer film‐like and stable RAs, which are promoted via reduction in transformation temperature, enhance the HCF properties by absorbing the energy required for fatigue crack propagation through improved transformation‐induced plasticity. However, blocky unstable RA and/or martensite‐austenite (MA) islands at prior austenite grain boundaries deteriorate the HCF properties of high‐temperature CFB. Furthermore, unindexed regions in EBSD maps are effectively used to differentiate the MA islands of CFB, as validated by scanning electron microscopy (SEM) images and deep learning‐based MA island segmentation.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3