Effect of Processing Conditions on Properties of PET/Clay Nanocomposite Films

Author:

Ghasemi H.1,Carreau P. J.1,Kamal M. R.2,Chapleau N.3

Affiliation:

1. CREPEC, Chemical Engineering Department, Ecole Polytechnique, Montreal, Quebec, Canada

2. CREPEC, Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada

3. CREPEC, Industrial Materials Institute, National Research Council Canada, Boucherville, Quebec, Canada

Abstract

Abstract Polyethylene terephthalate (PET) nanocomposite films (with 3 wt.% Cloisite 30B) were prepared by cast extrusion followed by uniaxial stretching, using chill rolls. Two screw profiles with different mixing elements under different screw speeds (N) and feeding rates (Q) were used to prepare PET/clay nanocomposite (PCN) films. Transmission electron microscopy (TEM) and wide angle X-ray diffraction (WAXD) showed that the clay layers were aligned in the machine direction (MD). XRD patterns depicted that the interlayer distance of clay platelets in the state of intercalation is somehow independent of the processing conditions, but the macro-scale characterization, including barrier and mechanical properties, showed that the level of clay layer delamination was affected by processing conditions. The results reveal that the applied strain has stronger effect than residence time on the barrier and mechanical properties. At the highest screw speed (N = 250 min−1), 27% reduction in oxygen permeability and 30% improvement in tensile modulus were obtained for the more severe screw profile.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3