The Effect of Nanosilicates on the Performance of Polyethylene Terephthalate Films Prepared by Twin-Screw Extrusion

Author:

Ghanbari A.1,Heuzey M.-C.1,Carreau P. J.1

Affiliation:

1. Research Center for High Performance Polymer and Composite Materials (CREPEC), Chemical Engineering Department, Polytechnique Montreal , Montreal , QC , Canada

Abstract

Abstract Polyethylene terephthalate (PET) films were prepared by cast extrusion using a twin-screw extruder with a severe screw profile. The effect of an organically modified montmorillonite on thermal, mechanical, optical, and barrier properties of the PET films were investigated. Morphological characterization of the nanocomposite films was performed by employing wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) followed by image analysis. The results unfold a mixed morphology for the nanocomposite films with more than 95% exfoliated and intercalated silicate layer structures, depending on the screw rotation speed. The remarkable dispersion of the organoclay particles at the nano-level is discussed in terms of solubility parameter and favorable interactions between PET macromolecules and organic modifier of the nanoclay. The crystal content of the nanocomposite films and their cold and hot crystallization temperatures confirmed the role of silicate nanolayers as a heterogeneous nucleating agent. While all nanocomposite films exhibit higher haze values in comparison to the neat PET samples, incorporation of 2 wt% nanoclay brought about 25% increase in tensile modulus and barrier properties. A range of screw rotation speeds with optimized properties in terms of haze, morphology, thermal, mechanical, and barrier properties is suggested.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3