Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium

Author:

Mukherjee Kakali,Saha Bidyut

Abstract

AbstractThe kinetic study of catalytic oxidation of D-lyxose by hexavalent chromium has been investigated spectrophotometrically under pseudo first order condition at temperature 313 K. The rate of oxidation of D-lyxose is very slow. Picolinic acid (PA), 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) are used as promoter to accelerate the rate of the reaction. Phen acts as the most effective promoter in aqueous medium. The rate of the reaction is also increased in presence of nonionic surfactant Triton-X-100 (TX-100) and anionic surfactant sodium dodecyl sulphate (SDS). They are used as catalyst in this reaction. Thus the observed micellar effects have been explained by considering the hydrophobic and electrostatic interactions between the reactants and surfactants in terms of the proposed mechanism. However, the combination of promoter and surfactants produces a better result. The maximum rate enhancement is obtained in presence of the combination of phen and TX-100.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3