Investigation of the Effect of Filler Concentration on the Flow Characteristics of Filled Polyethylene Melts

Author:

Campbell G. A.1,Wetzel M. D.2

Affiliation:

1. Castle Associates , Jonesport, Maine , USA

2. Florence , Oregon , USA

Abstract

Abstract All polymeric slurries that have a high concentration of filler are shear thinning. Shear thinning is an important characteristic of polymers, filled and unfilled, because it enables an increase in the throughput, shear rate in a die or an injection molding system without having to use substantially more power to increase the flow rate. Newtonian fluid-based slurries show an increase in shear thinning as the concentration of “filler” increases above the percolation threshold. As particle maximum packing concentration is approached the slurries begin to approach a perfect pseudoplastic fluid. In some cases, the shear thinning characteristics of a filled polymer do not increase substantially as the filler loading is increased. This is a quite different response than in Newtonian fluid-based slurry. Therefore, it is important to understand the materials engineering interactions that control shear thinning so that process flow models can better predict the performance of filled polymer systems. Highly filled polymers can have processing issues, including high screw shaft torque, energy consumption, die pressure and melt temperature rise. Previous theoretical developments and experimental evaluations of highly filled polymer melts showed that the rheology can be effectively described with a percolation model. In this work, capillary rheometer measurements using several low-density polyethylene resins, calcium carbonate and titanium dioxide fillers are reported using percolation theory concepts. The theoretical treatment of the rheology as a particulate percolating system with power-law behavior is used to analyze capillary rheometer data. The observed effects of resin molecular weight, filler type and size on rheology are described. Engineers that design and debottleneck polymer processes need to utilize the polymer viscosity at the minimum process shear rate to determine the smallest motor that will allow the process to run; in addition, the shear thinning characteristics of the polymer are used to indicate how much increased production may be possible with a given motor size. Thus, some examples of expected effects on melt processing are also presented.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Reference51 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3