The effect of Brownian motion on the bulk stress in a suspension of spherical particles

Author:

Batchelor G. K.

Abstract

The effect of Brownian motion of particles in a statistically homogeneous suspension is to tend to make uniform the joint probability density functions for the relative positions of particles, in opposition to the tendency of a deforming motion of the suspension to make some particle configurations more common. This smoothing process of Brownian motion can be represented by the action of coupled or interactive steady ‘thermodynamic’ forces on the particles, which have two effects relevant to the bulk stress in the suspension. Firstly, the system of thermodynamic forces on particles makes a direct contribution to the bulk stress; and, secondly, thermodynamic forces change the statistical properties of the relative positions of particles and so affect the bulk stress indirectly. These two effects are analysed for a suspension of rigid spherical particles. In the case of a dilute suspension both the direct and indirect contributions to the bulk stress due to Brownian motion are of order ø2, where ø([Lt ] 1) is the volume fraction of the particles, and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles. The differential equation representing the effects of the bulk deforming motion and the Brownian motion on the probability density of the separation vector of particle pairs in a dilute suspension is also investigated, and is solved numerically for the case of relatively strong Brownian motion. The suspension has approximately isotropic structure in this case, regardless of the nature of the bulk flow, and the effective viscosity representing the stress system to order ϕ2 is found to be \[ \mu^{*} = \mu(1+2.5\phi + 6.2\phi^2). \] The value of the coefficient of ø2 for steady pure straining motion in the case of weak Brownian motion is known to be 7[sdot ]6, which indicates a small degree of ‘strain thickening’ in the ø2-term.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3