Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy

Author:

Lohan Nicoleta Monica1,Pricop Bogdan1,Bujoreanu Leandru-Gheorghe1,Cimpoeşu Nicanor1

Affiliation:

1. Faculty of Materials Science and Engineering, The “Gh. Asachi” Technical University from Iaşi, Romania

Abstract

Abstract Different fragments of martensitic Cu-14.86 Zn-5.81 Al-0.5 Fe (mass.%) shape memory alloy were subjected to heating, up to 453 K, with different rates ranging from 1.66 ×10−2 K s−1 to 54.6 × 1.66 × 10−2 K s−1, performed by means of a differential scanning calorimeter. In all cases, during heating, an endothermic peak was observed which was associated with the martensite reversion to parent phase. By means of the differential scanning calorimeter charts the critical transformation temperatures of martensite reversion were determined using the tangent method. The effects of heating rate were evaluated from the point of view: (i) of variation tendencies of critical transformation temperatures; (ii) of deviations of experimental values from linear fit and extrapolation to zero heating rate; and (iii) of corroborating morphological changes of martensite (sub)plates with heat flow variation particularities. The results prove that there is an obvious tendency of critical transformation temperatures, of reverse martensitic transformation, to linearly increase with heating rate. The effectiveness of the linear relationships was checked for two heating rate values located inside and outside the above mentioned range, respectively and the difference between the experimental and calculated values of critical transformation temperatures fell within the range (−3 … +4) ‰.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3